Zitation: Frankenbach, Markus und Pelz, Mathias und Ritter, Marc und Ritz, Nepomuk und von Delft, Jan und Ge, Anxiang und Shim, Jeongmin: mpNRG PSFs used in: "Computing and compressing local vertex functions in imaginary and real frequencies from the multipoint numerical renormalization group using quantics tensor cross interpolation". Mai 2025. Open Data LMU. 10.5282/ubm/data.613
![]() |
Plain Text (Explanation of the dataset.)
README_OpenData.md 1kB |
![]() |
Other (PSF)
SIAM_u=0.50.zip 1GB |
![]() |
Other (PSF)
SIAM_u=1.00.zip 1GB |
![]() |
Other (PSF)
SIAM_u=1.50.zip 1GB |
![]() |
Other (PSF)
siam05_U0.05_T0.05_Delta0.0318.zip 670MB |
![]() |
Other (PSF)
siam05_U0.05_T0.005_Delta0.0318.zip 1GB |
![]() |
Other (PSF)
SIAM_u3_U0.05_T0.0005_Delta0.0053052.zip 1GB |
![]() |
Other (PSF)
SIAM_u5_U0.05_T0.0005_Delta0.0031831.zip 1GB |
DOI: 10.5282/ubm/data.613
Dieser Datensatz steht unter der Creative Commons Lizenz
CC BY-SA 4.0
Beschreibung
The multipoint numerical renormalization group (mpNRG) is a powerful impurity solver that provides accurate spectral data useful for computing local, dynamic correlation functions in imaginary or real frequencies non-perturbatively across a wide range of interactions and temperatures. It gives access to a local, non-perturbative four-point vertex in imaginary and real frequencies, which can be used as input for subsequent computations such as diagrammatic extensions of dynamical mean field theory. However, computing and manipulating the real-frequency four-point vertex on large, dense grids quickly becomes numerically challenging when the density and/or the extent of the frequency grid is increased. In this paper, we compute four-point vertices in a strongly compressed quantics tensor train format using quantics tensor cross interpolation, starting from discrete partial spectral functions obtained from mpNRG. This enables evaluations of the vertex on frequency grids with resolutions far beyond the reach of previous implementations. We benchmark this approach on the four-point vertex of the single-impurity Anderson model across a wide range of physical parameters, both in its full form and its asymptotic decomposition. For imaginary frequencies, the full vertex can be represented to an accuracy of 10−3 with maximum bond dimensions not exceeding 120. The more complex full real-frequency vertex requires maximum bond dimensions not exceeding 170 for 1% accuracy. Our work marks another step toward tensor-train-based diagrammatic calculations for correlated electronic lattice models starting from a local, non-perturbative mpNRG vertex.
Stichwörter
multipoint numerical renormalization group, Keldyh vertex, Matsubara vertex, tensor cross interpolation, correlated electrons, symmetric estimators
Dokumententyp: | Daten |
---|---|
Name der Kontaktperson: | Frankenbach, Markus |
E-Mail der Kontaktperson: | m.frankenbach at physik.uni-muenchen.de |
Fächer: | Physik |
Dewey Dezimalklassifikation: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik |
ID Code: | 613 |
Eingestellt von: | Markus Frankenbach |
Eingestellt am: | 19. Mai 2025 06:49 |
Letzte Änderungen: | 19. Mai 2025 06:51 |
Nur für Administratoren und Editoren: Dokument bearbeiten