Zitation: Pferdeklinik, LMU München, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Gluck Equine Research Center, University of Kentucky, Neuropathologie, Zentrum für Klinische Tiermedizin, LMU München, Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, May, Anna und Hanche-Olsen, Siv und Goehring, Lutz und Matiasek, Kaspar und Jäderlund, Karin Hultin und Zablotski, Yury und Gröndahl, Gittan: Motor pathway evaluation by transcranial magnetic stimulation in Swedish horses with acquired equine polyneuropathy. 3. April 2025. Open Data LMU. 10.5282/ubm/data.592
![]() |
Other (Daten zu May etal - Motor pathway evaluation by transcranial magnetic stimulation)
May_etal_Motor_pathway_evaluation_by_transcranial_magnetic_stimulation.zip - Ergänzendes Material 960kB |
![]() |
Plain Text
Readme_May_etal_Transkranielle_Magnetstimulation_bei_Pferden.txt 5kB |
DOI: 10.5282/ubm/data.592
Offizielle URL: https://www.doi.org/10.1111/evj.14506
Dieser Datensatz steht unter der Creative Commons Lizenz
CC BY 4.0
Beschreibung
Abstract Background: Acquired Equine Polyneuropathy in Nordic horses (AEP) is the most prevalent equine polyneuropathy in Norway, Sweden and Finland. AEP is characterized by pelvic limb knuckling due to metatarsophalangeal extension dysfunction. Objectives: To evaluate function of descending motor pathways in AEP using transcranial magnetic stimulation (TMS). Study design: An analytical, observational cohort design Methods: Clinical findings and TMS results of 20 horses from an AEP outbreak in Sweden were evaluated at two timepoints with 5 months interval. Latency time (LT) in milliseconds (ms) between coil discharge and onset of muscle potential was recorded for thoracic and pelvic limbs. Results: Fourteen affected horses showed knuckling, and 6 horses were neurologically sound at first visit. Thirteen affected horses had improved clinically five months later, four no longer showed knuckling. Motor neurological dysfunction with increased LT was confirmed by TMS in all 14 affected horses at both visits. Mean difference in LT from normalized reference values (ΔLT) in pelvic limbs of affected horses was +12.95 ms (+38%) at first examination (1.9-29.6 ms; SD 1.23; n=14), and +8.1 ms (+24%) five months later (1.0-18.9 ms; SD 1.21; n=14), cutoff >0.8 ms. Eleven of 14 affected horses also presented delayed TMS responses in thoracic limbs, with up to 14% ΔLT increase. Neurologically sound, non-lame horses (n=8) showed mean ΔLT -0.5 ms ( -1.8 to 0.2 ms; SD=0.64) in pelvic, and -0.35 ms (range, -0.7 to 0 ms; SD=0.26; n=8) in thoracic limbs, cutoff >0.2 ms. Limitations: Examinations were only repeated once for organizational reasons. Conclusion: This study proved involvement of motor pathways in AEP. Findings add to previously established involvement of sensory nerve fibers. Sensory and motor involvement contribute to mismatch of ascending and descending nerve signals, which contributes to the clinical manifestations. TMS may be useful in evaluating clinical and subclinical cases of AEP.
Stichwörter
Knuckling, Schwannopathy, Polyneuropathy, Lower motor neuron, Latency time, Transcranial magnetic stimulation
Quellenangaben
References 1. Gröndahl G, Hanche-Olsen S, Bröjer J, Ihler CF, Jäderlund KH, Egenvall A. Acquired equine polyneuropathy in Norway and Sweden: a clinical and epidemiological study. Equine Vet J Suppl. 2012(43):36-44. 2. Hanche-Olsen S, Teige J, Skaar I, Ihler CF. Polyneuropathy associated with forage sources in Norwegian horses. J Vet Intern Med. 2008;22(1):178-184. 3. Telama H, Alho J, Virtala A-M, Tulamo R-M. Acquired equine polyneuropathy- a review and an account of Finnish outbreaks. Suomen Eläinlääkärilehti. 2011;117(5):301-308. 4. Wolff C, Egenvall A, Hanche-Olsen S, Gröndahl G. Spatial and temporal distribution of incidence of acquired equine polyneuropathy in Norway and Sweden, 1995-2012. BMC Vet Res. 2014;10:265. 5. Hahn CN, Matiasek K, Syrja P, Jokinen TS, MacIntyre N, Tulamo RM. Polyneuropathy of Finnish horses characterised by inflammatory demyelination and intracisternal Schwann cell inclusions. Equine Vet J. 2008;40(3):231-236. 6. Gustafsson, K. and Roneus, M. (2000) (Outbreaks of neurological disorders in horses). Svensk Veterinärtidning 52, 253-259. 7. Hanche-Olsen S, Kielland C, Ihler CF, Hultin Jaderlund K. Long-term follow-up of Norwegian horses affected with acquired equine polyneuropathy. Equine Vet J. 2017. 8. Hanche-Olsen S, Matiasek K, Molin J, Rosati M, Hahn C, Hultin Jaderlund K, Gröndahl G. Acquired equine polyneuropathy of Nordic horses – a conspicuous inclusion body Schwannopathy. Neuromuscul Disord. 2017. 9. Hanche-Olsen S. Acquired equine polyneuropathy - clinical, pathological and epidemiological aspects [Philosophiae Doctor]. Oslo, Norway: Norwegian University of Life Sciences; 2017. 10. Matsumoto H, Hanajima R, Terao Y, Ugawa Y. Magnetic-motor-root stimulation: Review. Clinical Neurophysiology 2013; 124: 1055-1067. 11. Schriefer TN, Mills KR, Murray NM, Hess CW. Evaluation of proximal facial nerve conduction by transcranial magnetic stimulation. J neurol Neurosurg Psychiatry 1988; 51:60-66. 12. Voitenkov VV, Klimkin, A, Skripchenko N, Aksenova, A. Transcranial Magnetic Stimulation as an Additional Diagnostic Tool in Children with Acute Inflammatory Demyelinating Polyneuropathy. J Pediatr Neurosci. 2017 Apr-Jun; 12(2): 144-148. 13. Journée SL, Journée HL, Berends HI, Reed SM, de Bruijn CM, Delesalle CJG. Comparison of Muscle MEPs from transcranial magnetic and electrical stimulation and appearance of reflexes in horses. Front Neurosci 2020; 14: https://doi.org/10.3389/fnins.2020.570372. 14. Rapisarda G, Bastings E, Maertens de Noordhout A, Pennisi G, Delwaide PJ. Can motor recovery in stroke patients be predicted by early transcranial magnetic stimulation? Stroke 1996; 27: 2191-2196. 15. McCombe PA, Pollard JD, McLeod JG. Chronic inflammatory demyelinating polyradiculoneuropathy. A clinical and electrophysiological study of 92 cases. Brain 1987: 110: 1617-1630. 16. Nollet H, Van Ham L, Deprez P, Vanderstraeten G. Transcranial magnetic stimulation: review of the technique, basic principles, and applications. Veterinary Journal 2003a; 166(1): 28-42. 17. Nollet H, Van Ham L, Dewulf J, Vanderstraeten G, Deprez P. Standardization of transcranial magnetic stimulation in the horse. Veterinary Journal 2003b; 166(3): 244-250. 18. Walendy L, Goehring LS, Zablotski Y, Weyh T, Matiasek K, May A. Evaluation and utility of submaximal stimulation intensity in transcranial magnetic stimulation in the standing horse. J Equ Vet Science 2022;112. 19. Nollet H, Deprez P, Van Ham L, Dewulf J, Decleir A, Vanderstraeten G. Transcranial magnetic stimulation: normal values of magnetic motor evoked potentials in 84 normal horses and influence of height, weight, age, and sex. Equine Veterinary Journal 2004; 36(1). 20. Mayhew IGJ. Large animal neurology. Ames, IA: Wiley-Blackwell 2009; 11-46. 21. De Lahunta A, Glass E, Kent M. Veterinary Neuroanatomy and Clinical Neurology. 2014, 4th edition, Saunders. 22. Coggeshall RE, Ito H. Sensory fibres in ventral roots L7 and S1 in the cat. J Physiol 1977; 267:215-235. 23. Phillips LH II, Park TS, Shaffrey ME, Shaffrey CL. Electrophysiological evidence for afferent nerve fibers in human ventral roots. Muscle Nerve 2000; 23:410-415. 24. Rijckaert J, Pardon B, Saey V, Van Ham L, Ducatelle R, van Loon G, Deprez P. Determination of magnetic motor evoked potentials latency time cutoff values for detection of spinal cord dysfunction in horses. J Vet Intern Med 2019 Sep; 33(5):2312-18.
Dokumententyp: | Daten |
---|---|
Name der Kontaktperson: | May, Anna |
E-Mail der Kontaktperson: | anna.may at lmu.de |
Fächer: | Tiermedizin |
Dewey Dezimalklassifikation: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ID Code: | 592 |
Eingestellt von: | Prof. Dr. Anna May |
Eingestellt am: | 08. Apr. 2025 15:13 |
Letzte Änderungen: | 08. Apr. 2025 15:22 |
Nur für Administratoren und Editoren: Dokument bearbeiten