Zitation: Krueger, Tanja und Durmaz, Damla A. und Jimenez Soto, Luisa F.: Exo-Tox: Identifying Exotoxins from secreted bacterial proteins. 2025. Open Data LMU. 10.5282/ubm/data.576
![]() |
Other (Complete files used for the creation and test of the Exo-Tox predictor)
Exo-Tox.zip - Andere 1GB |
![]() |
Other (ReadMe-File to Exo-Tox.zip)
README_Exo-Tox.md - Zusätzliche Metadaten 9kB |
DOI: 10.5282/ubm/data.576
Dieser Datensatz steht unter der Creative Commons Lizenz
CC BY-SA 4.0
Beschreibung
Background: Bacterial exotoxins are secreted proteins able to affect target cells, and associated with diseases. Their accurate identification can enhance drug discovery and ensure the safety of bacteria-based medical applications. How- ever, current toxin predictors prioritize broad coverage by mixing toxins from multiple biological kingdoms and diverse control sets. This general approach has proven sub-optimal for identifying niche toxins, such as bacterial exotoxins. Recent Protein Language Models offer an opportunity to improve toxin prediction by capturing global sequence context and biochemical properties from protein sequences. Results: We introduce Exo-Tox, a specialized predictor trained exclusively on curated datasets of bacterial exotoxins and secreted non-toxic bacterial proteins,represented as embeddings by Protein Language Models. Compared to Basic Local Alignment Search Tool (BLAST)-based methods and generalized toxin predictors, Exo-Tox outperforms across multiple metrics, achieving an Matthews correlation coefficient > 0.9. Notably, Exo-Tox’s performance remains robust regardless of protein length or the presence of signal peptides. We analyze its limited transfer-ability to bacteriophage proteins and non-secreted proteins.
Stichwörter
Predictor, bacterial toxins, bacteriophages
Dokumententyp: | Sonstiges |
---|---|
Name der Kontaktperson: | Jimenez-Soto, Luisa F |
E-Mail der Kontaktperson: | l.jimenez at lmu.de |
Fächer: | Medizin
Mathematik, Informatik und Statistik Biologie |
Dewey Dezimalklassifikation: | 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie |
ID Code: | 576 |
Eingestellt von: | Dr. Luisa F. Jimenez Soto |
Eingestellt am: | 18. Mrz. 2025 12:37 |
Letzte Änderungen: | 18. Mrz. 2025 12:37 |
Nur für Administratoren und Editoren: Dokument bearbeiten