Incredibly Fast Reverse Geocoding with Open-
StreetMap Data

The goal of this project is to build a primitive but incredibly fast reverse geocoding
(coordinates to location lookup) system.

The basic principle is simple: - extract polygons of each administrative region
on OpenStreetMap (OSM) - build a lookup map that can be stored reasonably -
to geocode coordinates, look them up in the map

The map will look roughly like this (this is a visualization of the lookup map
with 0.5 degree resolution — the finest has the 1000 fold resolution!):

Figure 1: Visualization

However, things with OSM are not as easy as one may expect:

e OSM is a lot of data. It may use up all your memory easily. We are talking
of 2.7 billion nodes for the planet file, and 270 million ways and 3.1 million
relations. 32 bits are not enough to store the IDs.

e The dump file is not well suited for random access. Instead, you need to
process it in sequence. There are optimized data structures in the PBF
file format that exploit delta compression; and strings are shared via a
dictionary - and trust me, you don’t want to process the XML dump using
a DOM parser and XPath either. ..

e To reduce maintainance, OSM is heavily designed to share nodes and
ways for multiple purposes. In particular for boundaries a single way can
be used multiple times, such as denote the border of two countries, and
participating in the polygons of countries, counties, cities at the border,

e Assembling polygons in OSM is quite tricky; and often polygons are
incomplete (see also the documentation on OSM multipolygons)

http://wiki.openstreetmap.org/wiki/Relation:multipolygon

My first prototypes in Python were running out of memory on the full data set;
reducing the data set via Osmosis did not work, as it led to missing ways. So
I needed to carefully build this in Java, to conserve memory. Osmosis reads
and writes data multiple times (to large temporary files) - I decided to design
my approach around reading the input data multiple times instead, even if this
means re-reading data unnecessarily, at the benefit of not having to write large
temporary files.

Index Query

Quering the index is easy. It requires a single class, ReverseGeocoder, and a
data file (pregenerated data available under the ODbL license)

This class only depends on the JDK, on no other classes or packages.

In particular, you do not need a Mavenized package of this project. For
this reason, I have also chosen a very permissive 2-clause BSD license for the
lookup code.

ReverseGeocoder rgc = new ReverseGeocoder (filename) ;
/7 ...
String[] metadata = rgc.lookup(longitude, latitude);

Pay attention to the order of longitude and latitude! The order of these two values
is inconsistent across different applications. This has been a mess historically,
and we are not going to fix this here. We chose longitude, latitude because it
seems more intuitive to us to use x, y as commonly seen on a map. This is also
the order used by GeoJSON. (Plus, the run length encoding supposedly works
better this direction.)

Each metadata entry is a tab separated array, as generated by the parser from
the OSM file. The exact columns are easy to vary. For the provided data files,
there is documentation in the data folder.

Performance

So how “incredibly fast” is it?

I've added JMH unit tests to benchmark the throughput on a i7-3770 CPU with
3.4 GHz. Values are given in microseconds (lus = le-6 s) per operation, and
operations per microsecond.

Method Resolution Runtime Throughput
Lookup with caching of entities 0.5-2 0.231 us/op 4.316 ops/us
Lookup with caching of entities 0.05-2 0.575 us/op 1.706 ops/us

src/main/java/com/kno10/reversegeocode/query/ReverseGeocoder.java
http://geojson.org/

Method Resolution Runtime Throughput
Lookup with caching of entities 0.005-2 0.971 us/op 1.052 ops/us
Lookup with caching of entities 0.0005-2 1.562 us/op 0.639 ops/us
Lookup without caching of entities 0.5-2 0.683 us/op 1.439 ops/us
Lookup without caching of entities 0.05-2 1.114 us/op 0.928 ops/us
Lookup without caching of entities 0.005-2 1423 us/op 0.668 ops/us
Lookup without caching of entities 0.0005-2 2.057 us/op 0.473 ops/us
Open, query, close cycles 0.5-2 13.542 us/op 0.078 ops/us
Open, query, close cycles 0.05-2 21.221 us/op 0.048 ops/us
Open, query, close cycles 0.005-2 36.250 us/op 0.027 ops/us
Open, query, close cycles 0.0005-2 84.306 us/op 0.013 ops/us
Random lon+lat pair generation n/a 0.047 us/op 21.297 ops/us

As you can see, there is a benefit from using the caching included, and the setup
cost of the memory map is not negligible - it takes 50 times as long to open the
file than to query.

The benchmark queries random coordinates. Some of these will be at the
poles and in oceans. The index is designed to have very stable lookup times,
but lookups in asia tend to be slightly slower than lookups in America due to
the run-length encoding. For most applications, the differences should remain
neglible. In particular, the runtime is expected to increase sublinear with the
data resolution, not quadratic as with a naive map.

The last line in above table benchmarks the random number generation. This
runtime can therefore be subtracted from the other values. On the 0.005-2
resolution data set, a cached lookup therefore is about 924 ns. In one second,
we can perform over 1 million lookups. (1 ops/us = 1 million ops/s)

Caching is not applied to coordinates, but to the decoding of UTF-8, '\0'-
delimited data into an array of Java strings. As you can see, the string operations
take about 400-500 us/op. If your code is natively operating on UTF-8 encoded,
O-terminated strings (e.g. C code) then this is not needed.

Lookup times increase sub-linear with the data set size:

Method Resolution Table size Runtime
Random lon+lat pair generation 0.047 us/op
Lookup with caching of entities 0.5-2 1.602 MB 0.232 us/op
Lookup with caching of entities 0.05-2 9.775 MB 0.575 us/op
Lookup with caching of entities 0.005-2 49.098 MB 0.971 us/op
Lookup with caching of entities 0.0005-2 389.979 MB 1.562 us/op

OSM Data Extraction

We do a multi-pass process to build the index. Unless you want to re-
build the index, you can stop here. Everything you need to query is
documented above.

1. In the first pass, we ignore all nodes (the majority of the data). We
remember all ways and all relations we are interested in, but no additional
metadata to conserve memory.

2. We then build an index of the nodes we will need, and forget ways that we
did not use.

3. In the second pass, we look at the nodes, but only keep those that we are
interested in. Since we only need a subset, this should fit into memory now
(at least if you have a machine with a lot of memory, like I do.)

4. In the third pass (since ways or nodes might be out of sequence), we then
can output the polygons for each relation, along with some metadata.

On my system, the each pass takes about 2 minutes (reading from a network
share; likely a lot faster if T had stored the source file on my SSD).

Data Structures

We use Fastutil collections to conserve memory. These classes are excellent
hashmaps for primitive data types. For nodes, we also use a two level hashmap
with prefix compression, since node ids were given in sequence not randomly
(and thus have a lot of common prefixes - in particular, the first 20+ bits of each
id are usually 0).

Since our desired output resolution is much less than 0.01 degree, we also encode
each coordinate approximately using a single integer.

Implementation Notes

While osmosis --used-way --used-node did not work for me with tag filters,
it apparently worked just fine without. Using these filters can reduce the planet
file substantially, from 30 GB to 5.1 GB. This is worth doing as a preprocessing
step.

As of now, you will need to use a Debian Linux system. Some of the libraries
are not available on Maven central, so I had to put system paths (have a look at
the pom.xml, for what you need).

Index construction

The index essentially is a large pixmap referencing metadata from OSM, accom-
panied with a table containing the metadata from the index.

Rendering

Rendering is currently done via JavaFX, so you will also need to have a UI for
building an index. Unfortunately, this is also rather slow (10-30 minutes, depend-
ing on the desired resolution and number of polygons to render). However, we
needed an API that can render polygons with the even-odd rule and antialiasing,
and the java-gnome Cairo API wouldn’t allow us access the resulting bitmaps
without writing them to disk as PNG.

Since the JavaFX renderer has a texture limit of 8192x8192, we need to render
smaller patches and combine them to get a high-resolution map.

File Format

The file format is designed to be low-level, compact and efficient. It is meant to
be used via read-only shared memory mapping, to make best use of operating
system caching capabilities. The compression is less than what you could obtain
with PNG encoding or GZIP, but it allows skipping over data without decoding
it into application memory.

1. 4 bytes: magic header that identifies the file format. Currently, this is the
code 0x6e06e001, and I will increment the last byte on format changes.
4 bytes: width of the map in pixel
4 bytes: height of the map in pixel
4 bytes: width of the map in degree
4 bytes: height of the map in degree
4 bytes: longitude offset of the map in degree (usually +180°)
4 bytes: latitude offset of the map in degree
4 bytes: number of entities (max 0x8000)
9. height * 4 bytes: file offset of each row (monotone increasing)
10. nument * 4 bytes: file offset of metadata (monotone)
11. file size (= end of last entity)
12. x bytes for each row, as listed before (row encoding: see below)
13. x bytes for each metadata

P NSO WD

Each map row is encoded using a run-length encoding consisting of two varints.
The first varint is the entity number, the second is the run length - 1. The varint
encoding uses a variable number of bytes, where the first bit is 1 except for the
last byte.

To compute the length of the metadata, read two consecutive index offsets and
compute the difference. Entries are UTF-8 encoded, and are both separated and
terminated with \0 to make it easy to use them across different programming
languages. Metadata usually includes tab characters to separate columns. The
exact column layout is not specified in this file format, but there is documentation
in the data folder for the example data files provided.

This format is designed to provide reasonable compression, while still allowing
fast random access without having to decompress the full data. The UTF-8
encoded entities will often require decoding, and thus the sample implementation
includes a cache for the decoded strings.

Visualization

The index construction will also produce a .png visualizing the map, as shown
above.

Improving the Data

I am aware there are areas where the data is not yet very good. For example in
Portugal, there is little detailed information, same for Western Australia. You
are welcome to contribute data: just contribute administrative boundaries to
OpenStreetMap! For example there is a project to add administrative boundaries
for Portugal, that already improved the data quality of this index for Portugal
substantially. Isn’t that great?

TODO

Include ocean information

Fallback to other data for e.g. Western Australia?

Further reduce file size / coding (but not at the cost of speed)

Use a custom renderer (line-based with RLE to reduce memory?) instead
of JavaFX

=W N

Licensing

The index “’query” code is using the liberal BSD 2-clause license.

The index ‘’construction” code is AGPL-3 licensed (see LICENSE). I am aware
this is a rather restrictive license, but I believe in Copyleft and the GPL: because
I shared my code with you, you should also re-share your improvements, please.

The “’data” is derived from OpenStreetmap, and thus under the Open Data
Commons Open Database License and you are required to give credit as “©
OpenStreetMap contributors”.

http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/WikiProject_Portugal/Divis%C3%B5es_Administrativas/Lista_de_Divis%C3%B5es_Administrativas
http://wiki.openstreetmap.org/wiki/WikiProject_Portugal/Divis%C3%B5es_Administrativas/Lista_de_Divis%C3%B5es_Administrativas
LICENSE
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright

	Incredibly Fast Reverse Geocoding with OpenStreetMap Data
	Index Query
	Performance
	OSM Data Extraction
	Data Structures
	Implementation Notes

	Index construction
	Rendering
	File Format

	Visualization
	Improving the Data
	TODO
	Licensing

