Readme zur Dokumentation von Forschungsdatensätzen Ersteller*in Readme: Wehlte, Lukas Erstellungsdatum Readme: 2025-07-20 ______________________________ Titel des Forschungsdatensatzes: Elevated FDG Uptake in Non-Tumorous Lung Regions Does Not Predict Immune Checkpoint Inhibitor–Related Pneumonitis in Lung Cancer Patients Ort der Datenerhebung: München, Bayern, Deutschland Version: 1.0 Versionenänderungen: Herausgeber*in: Universitätsbibliothek der Ludwig-Maximilians-Universität München Herausgeber*in Identifier: [Angabe Institution per GND oder ROR] ______________________________ Ersteller*in 1 des Datensatzes: Wehlte, Lukas Ersteller*in 1 Identifier: https://orcid.org/0009-0001-2436-8630 Ersteller*in 1 Affiliation: Department of Medicine V, LMU University Hospital, München (Germany) Beteiligte[*] 1: Daisenberger, Lea Beteiligte 1 Identifier: Beteiligte 1 Affiliation : Department of Dermatology and Allergy, LMU University Hospital, München (Germany) [*] An der Sammlung von Forschungsdaten beteiligte Personen. ______________________________ Projektname: Pneumonitis: All lung cancer patients who were treated with an immune checkpoint inhibitor therapy at the Department of Medicine V at LMU Klinikum between 2014 and 2022. ______________________________ Abstract: This dataset is part of a research project that investigated the pretreatment standardized uptake value (SUV) on 18F-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) of non-tumorous lung tissue as a predictive imaging marker for the development of checkpoint inhibitor pneumonitis (CIP) in patients with lung cancer. In this retrospective study, we analyzed [18F]FDG-PET/CT datasets from 240 lung cancer patients who were consecutively scanned prior to receiving immune checkpoint inhibitor (ICI) therapy. The study compared SUVMEAN, SUVMAX, and SUV95 values, treatment regimens, and comorbidities between patients who developed CIP and those who did not. Logistic regression analyses were performed to assess the predictive value of pretreatment SUV for CIP development. This dataset comprises essential components for replicating the research findings presented in my dissertation. Included are a README file offering an overview of the dataset's contents and usage instructions, a cohort file containing the dataset used in the study, and R scripts facilitating the reproduction of the analyses outlined in the dissertation. These resources aim to enhance transparency and reproducibility, enabling fellow researchers to validate and build upon the findings of the original research article: https://doi.org/XXX Schlagwörter: Medicine, Lung cancer, PET/CT, SUV, Pneumonitis Methode der Datenerhebung: For clinical variables a semi-automatic tool was built to analyze text of doctor’s documentations using keywords for those characteristics. FDG-PET/CT images were evaluated using Visage®7, Visage Imaging, Inc., San Diego, USA ______________________________ Datei: COHORT (Data frame) Dateiformate: XLSX Datei: 0_Results.R (Runs all R files and includes explanations for each file 2.2_FDG-PET_CT 3.1_Patient_Characteristics 3.2_Pneumonitis 3.3_PET_CT_Devices 3.4_SUV_Correlation 3.4_SUV_Overview 3.4_SUV_Forest_Plot Dateiformate: XLSX; R ______________________________ Anmerkungen: This project was funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy—ID 390857198). The project is also supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft (DFG) within the framework of the CRC/Transregio 205/1 “The Adrenal: Central Relay in Health and Disease”. Moreover, this study was supported by the German Federal Ministry of Education and Research (BMBF) as part of the project MelAutim (01ZX1905A and 01ZX1905E), which aims a systems medicine investigation of autoimmunity in the context of immune therapies. ______________________________ Verwandte Datensätze: Wehlte, Lukas und Daisenberger, Lea: Raw Data and R Script for the Association between the Body Mass Index, Chronic Obstructive Pulmonary Disease and SUV of the Non-Tumorous Lung in the Pretreatment [18F]FDG-PET/CT of Patients with Lung Cancer. 1. Juli 2024. Open Data LMU. 10.5282/ubm/data.454